Wikipedia Mining Wikipedia as a Corpus for Knowledge Extraction
نویسندگان
چکیده
Wikipedia, a collaborative Wiki-based encyclopedia, has become a huge phenomenon among Internet users. It covers a huge number of concepts of various fields such as Arts, Geography, History, Science, Sports and Games. As a corpus for knowledge extraction, Wikipedia’s impressive characteristics are not limited to the scale, but also include the dense link structure, word sense disambiguation based on URL and brief anchor texts. Because of these characteristics, Wikipedia has become a promising corpus and a big frontier for researchers. A considerable number of researches on Wikipedia Mining such as semantic relatedness measurement, bilingual dictionary construction, and ontology construction have been conducted. In this paper, we take a comprehensive, panoramic view of Wikipedia as a Web corpus since almost all previous researches are just exploiting parts of the Wikipedia characteristics. The contribution of this paper is triple-sum. First, we unveil the characteristics of Wikipedia as a corpus for knowledge extraction in detail. In particular, we describe the importance of anchor texts with special emphasis since it is helpful information for both disambiguation and synonym extraction. Second, we introduce some of our Wikipedia mining researches as well as researches conducted by other researches in order to prove the worth of Wikipedia. Finally, we discuss possible directions of Wikipedia research.
منابع مشابه
Wikipedia Link Structure and Text Mining for Semantic Relation Extraction
Wikipedia, a collaborative Wiki-based encyclopedia, has become a huge phenomenon among Internet users. It covers huge number of concepts of various fields such as Arts, Geography, History, Science, Sports and Games. Since it is becoming a database storing all human knowledge, Wikipedia mining is a promising approach that bridges the Semantic Web and the Social Web (a. k. a. Web 2.0). In fact, i...
متن کاملWikipedia Mining for Triple Extraction Enhanced by Co-reference Resolution
Since Wikipedia has become a huge scale database storing wide-range of human knowledge, it is a promising corpus for knowledge extraction. A considerable number of researches on Wikipedia mining have been conducted and the fact that Wikipedia is an invaluable corpus has been confirmed. Wikipedia’s impressive characteristics are not limited to the scale, but also include the dense link structure...
متن کاملAdvertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles
When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...
متن کاملExtracting Structured Knowledge for Semantic Web by Mining Wikipedia
Since Wikipedia has become a huge scale database storing wide-range of human knowledge, it is a promising corpus for knowledge extraction. A considerable number of researches on Wikipedia mining have been conducted and the fact that Wikipedia is an invaluable corpus has been confirmed. Wikipedia’s impressive characteristics are not limited to the scale, but also include the dense link structure...
متن کاملDisentangling the Wikipedia Category Graph for Corpus Extraction
In several areas of research such as knowledge management and natural language processing, domain-specific corpora are required for tasks such as terminology extraction and ontology learning. The presented investigations herein are based on the assumption that Wikipedia can be used for the purpose of corpus extraction. It presents the advantage of possessing a semantic layer, which should ease ...
متن کامل